Finden Sie schnell plasma beschichtung für Ihr Unternehmen: 201 Ergebnisse

Plasma MEF, Plasmabeschichtung, Oberflächenvorbehandlung

Plasma MEF, Plasmabeschichtung, Oberflächenvorbehandlung

Das Plasma wird bei der MEF-Technologie durch eine elektrisch behinderte Entladung generiert und als gebündelter Strahl mit Hilfe von Druckluft auf die Oberfläche ausgeblasen. Ob Einzeldüse für punktgenaue Vorbehandlung, Mehrfachdüsen für breitere Anwendungen oder mehrere Plasmamodule für flächige Substrate - jeder Kundenanwendung kann mit dieser Technologie Rechnung getragen werden. Um spezielle funktionelle Gruppen an der Polymeroberfläche zu erzeugen, können unterschiedliche Prozessgase eingesetzt werden.
Oberflächenbehandlung verschiedenster Materialien durch Plasma und Corona

Oberflächenbehandlung verschiedenster Materialien durch Plasma und Corona

Die Oberflächenbehandlung mittels Plasmabehandlung bietet innovative Lösungen für die in vielen Branchen auftretenden Probleme mit Haftungs- und Benetzungseigenschaften. Mit mehr als 40 Jahren Erfahrung in der Herstellung von qualitativ hochwertigen Oberflächenbehandlungsprodukten für diverse Branchen entwickelt Tantec kontinuierlich neue und innovative Lösungen für einen anspruchsvollen Markt. Als privates, 1974 gegründetes Unternehmen ist die Tantec Group ein führender Hersteller von sowohl standardisierten als auch kundenspezifischen Plasma- und Corona-Systemen für die Oberflächenbehandlung von Kunststoffen und Metallen zur Verbesserung ihrer Adhäsionseigenschaften. Unsere Geräte zur Oberflächenbehandlung werden über unsere eigenen Niederlassungen und mehr als 30 Partner weltweit an Endverbraucher und OEMs in der ganzen Welt vertrieben. Die Tantec Vertrieb GmbH ist dabei Ansprechpartner für den deutschen Markt und steht bei Fragen jederzeit gerne zur Verfügung. Geräte: BottleTEC Eigenschaften: Corona-Vorbehandlung von Flaschenförmigen Gegenständen
Plasma-Nitrieren

Plasma-Nitrieren

Die Nitrierhärtung im Vakuum mittels Ionenbeschuss im Plasma einer modifizierten Gasentladung, ist ein Verfahren zur Oberflächenbehandlung von Werkstücken aus z.B. Eisen, Stahl, Guss. In einer Retorte wird zwischen Werkstückoberfläche und Retortenwand eine Gleichspannung angelegt, wobei die Werkstücke vorwiegend als Kathode, die Retortenwand als Anode geschaltet sind. Der Atmosphärendruck wird evakuiert und bei einem konstanten Unterdruckbereich in einem reaktionsfähigen Behandlungsgas die Gasentladung durch Anlegen einer Basisspannung eingeleitet.
Plasmaschneiden

Plasmaschneiden

Drei hocheffiziente Plasmaschneidanlagen, davon eine neue Zinser / Kjellberg Feinplasma Anlage sorgen für kurze Durchlaufzeiten und geringe Kosten. Effiziente Schnittoptimierungen, dank moderner Verschachtelungs-Software bedeuten einen geringen Verschnittanteil. Davon profitieren Sie in Form von günstigeren Materialkosten. Sie erhalten bei Heinz Edelstahl Zuschnitte aus 10- bis 40-mm Blechen (fast) in Laserqualität - gefertigt auf unserer neuen Feinplasma-Schneidanlage. Mit dieser Anlage können exaktere Brennzuschnitte angefertigt werden, die keine bzw. nur eine geringe Nachbearbeitung erfordern. 
Stahl Plasmaschneiden

Stahl Plasmaschneiden

Stahl von 1 - 40 mm Stärke Schneidbreite bis 3.000 mm Schneidlänge bis 14.000 mm
Laserstrahlhärten

Laserstrahlhärten

Das Laserstrahlhärten zählt wie das Flamm- und Induktionshärten zu den Randschichthärteverfahren. Es können alle Stähle laserstrahlgehärtet werden, welche sonst auch konventionell vergütet werden. Die Funktionsbereiche werden mit dem fokussierten Laserstrahl (Diodenlaser) sehr schnell auf die jeweils erforderliche Umwandlungstemperatur erwärmt. Die Verweildauer des Hochleistungs-Diodenlasers auf der zu härtenden Bauteilzone beträgt nur wenige Sekunden. Für den Abschreckprozess werden keine Hilfsmittel wie Wasser, Öl oder Druckluft benötigt. Das restliche kalte Bauteil schreckt die gelaserte Zone selbst ab (Selbstabschreckung) und verhindert das Umwandeln in einen weicheren Gefügezustand. Die extrem hohe Geschwindigkeit der Wärmeeinbringung bei dem Laserstrahlhärten, bei nahezu gleichzeitiger Selbstabschreckung, reduziert Verzüge erheblich oder ganz (je nach Bauteilgeometrie). Welchen Nutzen haben Sie durch das Laserstrahlhärten? schnelle Durchlaufzeiten im Vergleich zu dem üblichen Vergüten unterschiedliche Laser-Spurbreiten sorgen für individuelle Lösungen Einhärtetiefen bis 1,3mm, in Abhängigkeit von dem eingesetzten Werkstoff bzw. dem C-Potential und der Bauteilgeometrie, möglich gerade bei Low-Volume-Werkzeugen eine schnelle und sichere Option Die Einsatzbereiche für das Laserstrahlhärten sind: Werkzeuge und Formen der Umformtechnik Biege- und Schneidkanten Tauch- und Schließkanten Getriebe- und Motorenkomponenten Maschinenbetten Pinch-Presswerkzeuge Substitution von Bauteilen welche Induktivgehärtet werden
Plasmazuschnitte

Plasmazuschnitte

Beim Brennschneiden von Stahl mit einer CNC-Brennschneidmaschine können wir für Sie wirtschaftlich Zuschnitte wie Rechtecke, Ringe, Ronden u.a. nach Ihren Wünschen herstellen. Dabei können wir mit der Plasma Brennschneidtechnik bei einer Blechdicke von 3-45 mm arbeiten. Der Vorteil von Plasmazuschnitten gegenüber dem Laser ist die Wirtschaftlichkeit. Die Schnittgeschwindigkeiten sind bei den dickeren Blechstärken ähnlich bzw. gleich schnell wie beim Laser. Die Maschine ist jedoch im Invest und in der Wartung deutlich günstiger und hat damit einen günstigeren Stundensatz. Außerdem sind Plasma-Brennschneidmaschinen bei gleicher Investitionshöhe meist deutlich größer und können somit größere Bauteile herstellen. Plasmazuschnitte haben jedoch qualitativ dem Laser einen kleinen Nachteil. Sehr kleine Löcher und Innenausschnitte sind nicht ganz so hochpräzise wie bei einem Laserschnitt und können einen Schrägschnitt aufweisen. Gegenüber dem Schneidverfahren Autogen setzt sich die Plasma bei kleinen Blechdicken deutlich auf Grund der schnellen Schnittgeschwindigkeiten durch. Damit ist die Maschine wesentlich wirtschaftlicher als eine langsame Autogen-Brennschneidmaschine. Die Autogentechnik kann hier nur punkten wenn man auf Grund der Bauteilgeometrie mehrere Brenner einsetzen kann. Somit kann man bsp. 6 Teile gleichzeitig schneiden während auf der Plasma-Maschine nur 1 Teil produziert wird. Bei Großsserien und Massenteilen ist dies sehr wirtschaftlich und kann dann günstiger sein. Die Nachteile sind jedoch, dass beim Autogenschneiden sehr große Wärmeeinbringung stattfindet. Damit werden die Kanten hart und die Teile oftmals uneben oder wellig. Blechdicken: 3-45 mm max. Breite: 4.000 mm max. Schneidlänge: 24.000 mm
PLASMASCHNEIDEN

PLASMASCHNEIDEN

Mit Plasmaschneidemaschinen können Materialien bis 25 mm Stärke geschnitten werden. Der maximale Schneidebereich beträgt 12 000 mm x 4 000 m.
PLASMASCHNEIDEN

PLASMASCHNEIDEN

Plasmaschneiden ist wesentlich wirtschaftlicher als Laserschneiden. Plasma-Brennschneidemaschinen sind bei gleichen Investitionen größer als Lasertische und kommen bei größeren Bauteilen zum Einsatz. Beim Plasmaschneiden kann immer nur ein Teil produziert werden. Wir vereinen unsere Kompetenzen zu einer Gesamtleistung: Planung, Konstruktion, Fertigung von Rohteilen, zerspanende Weiterverarbeitung und das Finish mit Sandstrahlen oder Lack.
Plasmaschneiden

Plasmaschneiden

Fertigung auf konstant hohem Niveau - dank unserer modernen Plasmaschneideanlage. Unsere moderne CNC-Plasmaschneideanlage ist mit modernster Technologie ausgestattet, inklusive Rotator und integriertem Bohrzentrum. Die Anlage wird von unseren bestens geschulten Mitarbeitern gesteuert und stellen eine sichere und präzise Bearbeitung sicher. SCHNEIDEN BIS 50 MM Platinengröße max. 2000 x 4000 mm Schnittstärke 50 mm Bohrwerk bis 40 mm Gewindeschneiden bis M2
Plasmaschneiden

Plasmaschneiden

Plasmaschneiden bietet viele Vorteile: Sehr gute Schnittqualität Gerade Schnittflächen Metallurgisch perfekte Oberflächen (oxidiert) Mittlere Wärmeeinbringung Geringe Aufhärtung der Schnittkanten Hohe Schneidgeschwindigkeiten Wir schneiden Blechdicken zwischen 3 und 50 mm bis zu einer maximalen Blechgröße von 3.000 x 12.000 mm. Der maximale Schneidwinkel beträgt 45°, wir schneiden V-, X- und Y-Fasen. Unsere Kernkompetenz dabei ist das Plasma-Fasenschneiden, der „Königsdisziplin“ des Plasmaschneidens, das eine genaue Kenntnis der Maschine und des Schneidprozesses erfordert und hohe Anforderungen an die Programmierung stellt. Unser Team für den Bereich Plasmaschneiden wurden in unserem Unternehmen zu entsprechenden Experten ausgebildet. Dieses Team verfügt außerdem über langjährige Erfahrung, da wir schon seit dem Jahre 2006 Plasma-Fasenschneiden. Unsere Plasmaanlagen Messer OmniMat L 7000 2 x Plasma 360 Ampere, davon 1 x Fasenaggregat Skew Infinity und 1 x Senkrechtaggregat, maximaler Arbeitsbereich: 6.000 x 20.000 mm Messer OmniMat L 7000 2 x Plasma 260 Ampere, 2 x Senkrechtaggregat, maximaler Arbeitsbereich 6.000 x 20.000 mm. Laserschneiden Beim Laserschneiden ist die Schnittfuge im Vergleich zu anderen thermischen Trennverfahren sehr klein. Das liegt am kleinen Fokus des Laserstrahls. Die Wärmeeinbringung in das Material ist sehr gering, sodass auch kleine Geometrien geschnitten werden können. Wir setzen das Laserschneidverfahren für geringere Blechdicken bis 30 mm insbesondere dort ein, wo die Teile automatisiert weiterverarbeitet werden. Hier sind noch engere Toleranzen gefordert, als wir es mit Plasmaschneiden erreichen können. Auch im Bereich des Laserschneidens ist das Fasen-Laserschneiden unsere Spezialität. Wir schneiden bei Materialdicken bis 30 mm maximale Schneidwinkel bis zu 50°. Unsere Laseranlagen Neu: Messer ELEMENT 400 L 8 kW Faserlaser Fasenaggregat, maximaler Arbeitsbereich 3.000 x 8.000 mm Trumpf TLF 3200 3,2 kW CO2-Laser, maximaler Arbeitsbereich 2.000 x 4.000 m
Plasmanitrieren

Plasmanitrieren

Thermochemische Wärmebehandlung bei niedrigen Behandlungstemperaturen für hohe Maßhaltigkeit für jeden Stahl Das Nitrieren zählt zu den thermochemischen Wärmebehandlungen und wird angewendet, um Stählen zu verbesserter Korrosionsbeständigkeit und Härte zu verhelfen. Hierfür wird der Werkstoff zuerst erwärmt und nach Erreichen der gewünschten Behandlungstemperatur Stickstoff zugeführt. Dieser diffundiert in die Oberfläche des Stahls und verändert ihre Eigenschaften zugunsten einer verbesserten Widerstandsfähigkeit. Die exakte Dicke und Härte der durch die Randschichtumwandlung gebildeten Nitrierschicht hängt von der Legierung des behandelten Stahls, aber auch von den herrschenden Temperaturen und der Behandlungsdauer ab. Das Plasmanitrieren bietet die Möglichkeit, den Aufbau der Randschicht präzise an die Beanspruchung anzupassen.
Plasma-Schneiden

Plasma-Schneiden

Das schnelle und kostengünstige Trennen von Metall und deren Legierungen gewinnt immer mehr an Bedeutung. Weiterhin sind die einfache Anwendung, die geringen Wärmeeinflußzonen, die exakten Schnittkanten und die geringen Betriebskosten die Vorteile des Plasmaschneidens. ELEMENTA bietet ein umfangreiches Sortiment an hochwertigen Plasma-Schneidanlagen und Brennerausführungen für alle auf dem Markt erhältichen Plasmaschneidanlagen. Diese können innerhalb kürzester Zeit direkt an Ihren Einsatzort geliefert werden. Sie brauchen ein Ersatzteil binnen kürzester Zeit ? Wir liefern es binnen kürzester Zeit ! Gleich welchen Herstellers und garantieren Ihnen einen Reparatur Service aller Ihrer vorhanden Schweiß- und Schneidanlagen.
CNC Plasmatechnik

CNC Plasmatechnik

Das Plasmaschneiden gehört zu den thermischen Schmelzschneidverfahren, welches mit einem durch eine Düse eingeschnürten, elektrischen Lichtbogen ausgeführt wird. Beim Schneidprozess wird zunächst zwischen Düse und Elektrode (Kathode) ein Pilotlichtbogen durch Hochspannung gezündet. Er ist energiearm und sorgt für die teilweise Ionisation der Strecke zwischen Plasmabrenner und Werkstück. Sobald der Pilotbogen das Werkstück berührt, wird der elektrische Stromkreis geschlossen und durch eine Leistungserhöhung der Hauptlichtbogen gezündet. Durch die hohe thermische Energie des Lichtbogens und die hohe kinetische Energie des Plasmagases wird der Werkstoff aufgeschmolzen und die Schmelze aus der Schnittfuge getrieben. Besonders große Vorteile bietet das Verfahren durch die schmale Wärmeeinflusszone und die hohen Schneidgeschwindigkeiten. In unserem Unternehmen arbeiten wir mit MultiTherm 4000 / Maschinenbett 12 m x 3 m Stromquelle Kjellberg / HiFocus440i
Plasmaschneiden

Plasmaschneiden

Plasmaschneiden ist eins der wirtschaftlichsten Trennverfahren und sowohl Privatleute als auch gewerbliche Kunden können dies bei uns beauftragen. Das Plasmaschneiden eignet sich für Sie vor allem dann, wenn Sie auf einen besonders glatten und sauberen Schnitt angewiesen sind. Dabei ist nicht nur die Verarbeitung von Stahl möglich, sondern auch die von jedem anderen Metall.
Plasmaschneiden

Plasmaschneiden

leistungsstarkes und vielfältiges Schneidverfahren einsetzbar bei allen Metallen schmale Wärmeeinflusszone hohe Schneidgeschwindigkeit Trennung von elektrisch leitenden Werkstoffen
Plasmaschneiden

Plasmaschneiden

Edelstahl-Plasmazuschnitte bis zu einer maximalen Abmessung von 12000 x 3000 x 150 mm können auch fünf Maschinen gefertigt werden (HiFocus, FineFocus, Unterwasser). Mit 5 verschiedenen CNC-gesteuerten Plasmaschneidanlagen können wir Blechzuschnitte bis zu einer Dicke von 150 mm fertigen. Dank verschiedener Technologien können wir Ihnen präzise Feinstrahlplasmazuschnitte (HiFocus) als auch verzugsarme Unterwasserplasmazuschnitte anbieten. unser Maschinenpark und die eingesetzten Technologien sorgen für günstige Preise, schnelle Termine und beste Schnittqualität. Sämtliche Werkstoffe und Abmessungen die sich in unserem Lager befinden können wir mittels Plasma zuschneiden. (1.4301 / 1.4307 / 1.4541 / 1.4878 / 1.4401 / 1.4404 / 1.4571 / 1.4462 / 1.4410 / 1.4435 / 1.4539 / 1.4313 / 1.4828 / 1.4835 / 1.4841 / 1.4845)
Puls-Plasma-Nitrieren und PVD-Beschichtung mittels Lichtbogenverdampfung

Puls-Plasma-Nitrieren und PVD-Beschichtung mittels Lichtbogenverdampfung

– die Kombination dieser Prozesse erzeugt ein hartes nitriertes Grundmaterial und eine Hartstoffbeschichtung auf der Oberfläche. Dies kann die Lebensdauer von Komponenten und Formwerkzeugen signifikant erhöhen. Beim Puls-Plasma-Nitrieren wird über eine separate Anode ein Plasma generiert, welches hochenergetische Stickstoff-Ionen erzeugt. Diese können bis zu einer Tiefe von 100 μm ins Grundmaterial des Beschichtungsgutes eindringen und sich dort einlagern.
Plasmavorbehandlung

Plasmavorbehandlung

Viele Anwendungen erfordern eine gute Haftung der Dichtung bzw. des Klebers. Wir empfehlen daher die Plasmavorbehandlung. Plasmavorbehandlung Viele Anwendungen erfordern eine gute Haftung der Dichtung bzw. des Klebers. Wir empfehlen daher die Plasmavorbehandlung. Diese dient zur hochwertigen Reinigung, um Haftungseigenschaften zum Medium zu verbessern und um die Beschichtung von Oberflächen gezielt zu aktivieren. Dieses Verfahren hat deutliche Vorteile gegenüber der chemischer Behandlung von Oberflächen.
Oberflächenbeschichtung: Spritzverzinken

Oberflächenbeschichtung: Spritzverzinken

Beim Spritzverzinken bildet das aufgeschmolzen aufgetragene Zinkpulver eine mikroporöse Beschichtung. Dabei erreicht die aufgetragene Zinkschicht eine Stärke von bis zu einem Millimeter. Die durch Spritzverzinkung erzeugte Beschichtung ist ein ebenso nachhaltiger Korrosionsschutz wie die durch Feuerverzinken. Durch die Vorbehandlung Sandstrahlen wird eine ausreichend gute Haftung auf der Oberfläche des Bauteils durch das Aufrauen erreicht.
Oberflächenbeschichtung: Spritzverzinken

Oberflächenbeschichtung: Spritzverzinken

Beim Spritzverzinken bildet das aufgeschmolzen aufgetragene Zinkpulver eine mikroporöse Beschichtung. Dabei erreicht die aufgetragene Zinkschicht eine Stärke von bis zu einem Millimeter. Die durch Spritzverzinkung erzeugte Beschichtung ist ein ebenso nachhaltiger Korrosionsschutz wie die durch Feuerverzinken. Durch die Vorbehandlung Sandstrahlen wird eine ausreichend gute Haftung auf der Oberfläche des Bauteils durch das Aufrauen erreicht.
Plasmaschneiden

Plasmaschneiden

Plasmaschneiden Mit der neuesten Generation unserer Plasmaquelle von Kjellberg aus Finsterwalde schneiden wir Edelstahl mit 440Ampere. Unser Brenner kann Materialien bis zu einer Stärke von bis zu 100mm Edelstahl schneiden. Markierungen und Gravuren sind ebenfalls möglich.
Plasmaschneiden

Plasmaschneiden

STAKO schneidet mit einer Plasma-Schneidanlage (auch als Unterwasserzuschnitt) mit bis zu 400 A Leistung. Schneidmasse (B x L): maximal 3100 x 15000 mm Verarbeitbare Blechdicke: 6 - 50 mm
PLASMASCHNEIDEN

PLASMASCHNEIDEN

Produktivität, Qualität und Einsatzvielfalt – und das in Kombination mit höchster Präzision. Dahinter steckt beste Qualität der Schnittflächen, gekennzeichnet durch Bartfreiheit und sehr geringe Rechtwinkligkeits- und Neigungstoleranz sowie Rautiefe. Diese sind im Zusammenwirken mit hoher Präzision im Toleranzbereich bis +/- 0,2 mm. Bei großer Wiederholgenauigkeit stehen sie in Verbindung mit hervorragender Produktivität.
Plasmaschneiden

Plasmaschneiden

Diese Tech­nologie schnei­det Me­talle mit­tels eines Plas­mas, das durch einen elek­trischen Licht­bogen er­zeugt wird. Das wirt­schaftliche Trenn­ver­fahren für Stahl oder anderes elek­trisch lei­tende Ma­ter­ial kann bis zu einer Werk­stück-­Dicke von 30 mm ein­gesetzt werden.
Plasmaschneiden

Plasmaschneiden

Ein thermisches Schneidverfahren, das aufgrund seiner einfachen Handhabung beliebt ist. Das Plasmaschneiden zeichnet sich durch seine kurze Durchstechzeit, hohe Schnittgeschwindigkeit und Schnittqualität bei geringen Betriebskosten aus.
Plasmaschneiden

Plasmaschneiden

Kurzfristig kann beim Plasmaschneiden individuellen Anforderungen und Bedürfnissen entsprochen werden. Oftmals reicht eine Skizze mit genauen Maßangaben aus. Zusammen mit unseren Technikern wird dann die Plasmabrennanlage programmiert.
Laserstrahlhärten

Laserstrahlhärten

Die Technologie des Laserstrahlhärtens gehört zu den Kernkompetenzen von ERLAS. Seit Entwicklung der weltweit ersten Härteanlage auf Basis eines Hochleistungsdiodenlasers im Jahr 1998 bietet ERLAS Laserhärteanlagen der Baureihe ERLASER® HARD an und setzt diese auch in der Lohnfertigung für Kunden erfolgreich ein. An den Standorten in Erlangen und Amurrio (Spanien) produzieren drei Laserstrahlhärte- und beschichtungsanlagen für den Werkzeug- und den Maschinenbau. Mit einer temperaturgeregelten Prozessführung und abgestuft einstellbaren Spurbreiten von 5 bis 60 mm ist das partielle, martensitische Umwandlungshärten eine etablierte Technologie geworden, die das Härten mit der Flamme oder mit dem Induktor zunehmend ablöst. Selbst komplizierte Geometrien, wie sie häufig an Schneidwerkzeugen für Blechformteile zu finden sind, sind präzise und sicher bearbeitbar. Die Verwendung einer ständig wachsenden Technologiedatenbank garantiert die gewünschten Härteergebnisse auch bei Losgröße eins. Da beim Laserstrahlhärten nur die Randschicht behandelt wird, entsteht im Vergleich zu anderen Härteverfahren deutlich weniger Verzug. Eine Nachbearbeitung ist deshalb in der Regel nicht notwendig. Für die Programmierung der Laserhärteanlagen setzt ERLAS eine durchgängige CAD/CAM-Lösung mit der Software Toplas3D® ein. Vorteile sind die Vorabprüfung der Machbarkeit, verkürzte Durchlaufzeiten und konstante Einhärtetiefen. Angewendet wird das Verfahren unter anderem an Werkzeugen für die Massiv- und die Blechumformung, das Karosserieziehen, Biegen, Schneiden oder das Spritzgießen.
Thermisches Beschichten - die Lösung für hochwertige, funktionelle Beschichtungen

Thermisches Beschichten - die Lösung für hochwertige, funktionelle Beschichtungen

Das Thermische Spritzen als Verfahrensgruppe bietet universelle Möglichkeiten zur Aufbringung verschiedener funktioneller Schichten, zur Reparatur oder auch zur Neufertigung von Bauteilen. Die GfE verfügt über mehr als 20jährige Erfahrungen auf dem Gebiet des Thermischen Spritzens und führt für nahezu alle Industriebereiche Lohnbeschichtungen aus. Unsere Erfahrungen und unser Know-How in der Werkstoff-, Schicht- und Technologieentwicklung ermöglichen uns, auch bei neuen Anwendungen unsere Kunden umfassend zu beraten und zielstrebig geeignete Beschichtungslösungen zu finden. Der neueste Stand der thermischen Spritztechnik sowie die Maschinenausstattung zur mechanischen Bearbeitung garantieren eine komplette sowie schnelle und zuverlässige Abwicklung Ihrer Aufträge.
Verschiedene Arten von Beschichtungen

Verschiedene Arten von Beschichtungen

Man unterscheidet in drei verschiedene Beschichtungstypen: die Metallbeschichtung, die Keramikbeschichtung und die Carbidbeschichtung. Jede dieser Schichten hat Ihre Eigenschaften, ob nun sehr hart, aber auch spröde, oder sehr weich und gut leitend, isolierend, chemisch beständig, dekorativ... Da gibt es wenig Grenzen.